You can use the pandas **notnull()** function to test whether or not elements in a pandas DataFrame are null.

If an element is equal to NaN or None, then the function will return **False**.

Otherwise, the function will return **True**.

Here are several common ways to use this function in practice:

**Method 1: Filter for Rows with No Null Values in Any Column**

df[df.notnull().all(1)]

**Method 2: Filter for Rows with No Null Values in Specific Column**

df[df[['this_column']].notnull().all(1)]

**Method 3: Count Number of Non-Null Values in Each Column**

df.notnull().sum()

**Method 4: Count Number of Non-Null Values in Entire DataFrame**

df.notnull().sum().sum()

The following examples show how to use each method in practice with the following pandas DataFrame:

import pandas as pd import numpy as np #create DataFrame df = pd.DataFrame({'team': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'], 'points': [18, 22, 19, 14, 14, 11, 20, np.nan], 'assists': [5, np.nan, 7, 9, 12, 9, 9, np.nan], 'rebounds': [11, 8, 10, 6, 6, 5, np.nan, 12]}) #view DataFrame print(df) team points assists rebounds 0 A 18.0 5.0 11.0 1 B 22.0 NaN 8.0 2 C 19.0 7.0 10.0 3 D 14.0 9.0 6.0 4 E 14.0 12.0 6.0 5 F 11.0 9.0 5.0 6 G 20.0 9.0 NaN 7 H NaN NaN 12.0

**Example 1: Filter for Rows with No Null Values in Any Column**

The following code shows how to filter the DataFrame to only show rows with no null values in any column:

#filter for rows with no null values in any column df[df.notnull().all(1)] team points assists rebounds 0 A 18.0 5.0 11.0 2 C 19.0 7.0 10.0 3 D 14.0 9.0 6.0 4 E 14.0 12.0 6.0 5 F 11.0 9.0 5.0

Notice that each of the rows in this filtered DataFrame have no null values in any column.

**Example 2: Filter for Rows with No Null Values in Specific Column**

The following code shows how to filter the DataFrame to only show rows with no null values in the **assists** column:

#filter for rows with no null values in the 'assists' column df[df[['assists']].notnull().all(1)] team points assists rebounds 0 A 18.0 5.0 11.0 2 C 19.0 7.0 10.0 3 D 14.0 9.0 6.0 4 E 14.0 12.0 6.0 5 F 11.0 9.0 5.0 6 G 20.0 9.0 NaN

Notice that each of the rows in this filtered DataFrame have no null values in the **assists** column.

**Example 3: Count Number of Non-Null Values in Each Column**

The following code shows how to count the number of non-null values in each column of the DataFrame:

#count number of non-null values in each column df.notnull().sum() team 8 points 7 assists 6 rebounds 7 dtype: int64

From the output we can see:

- The
**team**column has 8 non-null values. - The
**points**column has 7 non-null values. - The
**assists**column has 6 non-null values. - The
**rebounds**column has 7 non-null values.

**Example 4: Count Number of Non-Null Values in Entire DataFrame**

The following code shows how to count the number of non-null values in the entire DataFrame:

#count number of non-null values in entire DataFrame df.notnull().sum().sum() 28

From the output we can see there are **28** non-null values in the entire DataFrame.

**Additional Resources**

The following tutorials explain how to perform other common filtering operations in pandas:

How to Filter a Pandas DataFrame by Column Values

How to Filter for “Not Contains” in Pandas

How to Filter a Pandas DataFrame on Multiple Conditions