The uniform distribution is a probability distribution in which every value between an interval from *a* to *b* is equally likely to occur.

In this article we share 5 examples of the uniform distribution in real life.

**Example 1: Guessing a Birthday**

If you walked up to a random person on the street, the probability that their birthday falls on a given date would follow a uniform distribution because each day of the year is equally likely to be their birthday.

For example, there are 365 days in a year so the probability that their birthday is on January 1st would be **1/365**.

Similarly, the probability that their birthday is on January 2nd is **1/365**.

Similarly, the probability that their birthday is on January 3rd is **1/365**.

And so on.

**Example 2: Rolling a Die**

If you roll a die one time, the probability that it falls on a number between 1 and 6 follows a uniform distribution because each number is equally likely to occur.

For example, there are 6 possible numbers the die can land on so the probability that you roll a 1 is **1/6**.

Similarly, the probability that you roll a 2 is **1/6**.

Similarly, the probability that you roll a 3 is **1/6**.

And so on.

**Example 3: Raffle Tickets **

Suppose a basketball stadium holds a raffle in which it will randomly select one seat number out of 10,000 possible seats in the stadium and give the patron in that seat number a prize. The probability that any individual seat is chosen follows a uniform distribution.

For example, if there are 10,000 total seats then the probability that seat “1” will be chosen is **1/10,000**.

Similarly, the probability that seat “2” is chosen is **1/10,000**.

Similarly, the probability that seat “3” is chosen is **1/10,000**.

And so on.

**Example 4: Deck of Cards**

Suppose you randomly select a card from a deck. The probability that the card will be either a spade, heart, club, or diamond follows a uniform distribution because each suit is equally likely to be chosen.

For example, the probability that you choose a spade is **1/4**.

Similarly, the probability that you choose a heart is **1/4**.

Similarly, the probability that you choose a club is **1/4**.

Similarly, the probability that you choose a diamond is **1/4**.

**Example 5: Spinning a Spinner**

Suppose a spinner is split into three equal parts with the following colors painted on different parts: red, green, and blue. If you spin the spinner one time, the probability that it will land on any given color follows a uniform distribution because the spinner is equally likely to land on each color.

For example, the probability that the spinner lands on red is **1/3**.

Similarly, the probability that the spinner lands on green is **1/3**.

Similarly, the probability that the spinner lands on blue is **1/3**.

**Additional Resources**

The following articles share examples of how other probability distributions are used in the real world:

6 Real-Life Examples of the Normal Distribution

5 Real-Life Examples of the Binomial Distribution

5 Real-Life Examples of the Poisson Distribution

5 Real-Life Examples of the Geometric Distribution