PySpark: How to Replace Multiple Values in One Column


You can use the following syntax to replace multiple values in one column of a PySpark DataFrame:

from pyspark.sql.functions import when

#replace multiple values in 'team' column
df_new = df.withColumn('team', when(df.team=='A', 'Atlanta')\
                              .when(df.team=='B', 'Boston')\
                              .when(df.team=='C', 'Chicago'))\
                              .otherwise(df.team))

This particular example makes the following replacements in the team column of the DataFrame:

  • Replace ‘A’ with ‘Atlanta’
  • Replace ‘B’ with ‘Boston’
  • Replace ‘C’ with ‘Chicago’

The following examples show how to use this syntax in practice.

Example: How to Replace Multiple Values in Column of PySpark DataFrame

Suppose we have the following PySpark DataFrame that contains information about various basketball players:

from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()

#define data
data = [['A', 'East', 11], 
        ['A', 'East', 8], 
        ['A', 'East', 31], 
        ['B', 'West', 16], 
        ['B', 'West', 6], 
        ['C', 'East', 5],
        ['D', 'West', 12],
        ['D', 'West', 24]] 
  
#define column names
columns = ['team', 'conference', 'points'] 
  
#create dataframe using data and column names
df = spark.createDataFrame(data, columns) 
  
#view dataframe
df.show()

+----+----------+------+
|team|conference|points|
+----+----------+------+
|   A|      East|    11|
|   A|      East|     8|
|   A|      East|    31|
|   B|      West|    16|
|   B|      West|     6|
|   C|      East|     5|
|   D|      West|    12|
|   D|      West|    24|
+----+----------+------+

We can use the following syntax to replace several values in the team column of the DataFrame:

from pyspark.sql.functions import when

#replace multiple values in 'team' column
df_new = df.withColumn('team', when(df.team=='A', 'Atlanta')\
                              .when(df.team=='B', 'Boston')\
                              .when(df.team=='C', 'Chicago'))\
                              .otherwise(df.team))

#view new DataFrame
df_new.show()

+-------+----------+------+
|   team|conference|points|
+-------+----------+------+
|Atlanta|      East|    11|
|Atlanta|      East|     8|
|Atlanta|      East|    31|
| Boston|      West|    16|
| Boston|      West|     6|
|Chicago|      East|     5|
|      D|      West|    12|
|      D|      West|    24|
+-------+----------+------+

Notice that several of the values in the team column have been replaced with specific new values.

Note that we did not specify a value to replace ‘D’ with in the team column so it simply remained the same.

Note: You can find the complete documentation for the PySpark when function here.

Additional Resources

The following tutorials explain how to perform other common tasks in PySpark:

PySpark: How to Replace Zero with Null
PySpark: How to Replace String in Column
PySpark: How to Conditionally Replace Value in Column

Leave a Reply

Your email address will not be published. Required fields are marked *