There are two common ways to find duplicate rows in a PySpark DataFrame:
Method 1: Find Duplicate Rows Across All Columns
#display rows that have duplicate values across all columns
df.exceptAll(df.dropDuplicates()).show()
Method 2: Find Duplicate Rows Across Specific Columns
#display rows that have duplicate values across 'team' and 'position' columns df.exceptAll(df.dropDuplicates(['team', 'position'])).show()
The following examples show how to use each method in practice with the following PySpark DataFrame:
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
#define data
data = [['A', 'Guard', 11],
['A', 'Guard', 8],
['A', 'Forward', 22],
['A', 'Forward', 22],
['B', 'Guard', 14],
['B', 'Guard', 14],
['B', 'Forward', 13],
['B', 'Forward', 7]]
#define column names
columns = ['team', 'position', 'points']
#create dataframe using data and column names
df = spark.createDataFrame(data, columns)
#view dataframe
df.show()
+----+--------+------+
|team|position|points|
+----+--------+------+
| A| Guard| 11|
| A| Guard| 8|
| A| Forward| 22|
| A| Forward| 22|
| B| Guard| 14|
| B| Guard| 14|
| B| Forward| 13|
| B| Forward| 7|
+----+--------+------+
Example 1: Find Rows with Duplicate Values Across All Columns
We can use the following syntax to find rows that have duplicate values across all columns in the DataFrame:
#display rows that have duplicate values across all columns
df.exceptAll(df.dropDuplicates()).show()
+----+--------+------+
|team|position|points|
+----+--------+------+
| A| Forward| 22|
| B| Guard| 14|
+----+--------+------+
We can see that there are two rows that are exact duplicates of other rows in the DataFrame.
Example 2: Find Rows with Duplicate Values Across Specific Columns
We can use the following syntax to find rows that have duplicate values across the team and position columns in the DataFrame:
#display rows that have duplicate values across 'team' and 'position' columns df.exceptAll(df.dropDuplicates(['team', 'position'])).show() +----+--------+------+ |team|position|points| +----+--------+------+ | A| Guard| 8| | A| Forward| 22| | B| Guard| 14| | B| Forward| 7| +----+--------+------+
The resulting DataFrame contains only the rows with duplicate values across both the team and position columns.
Additional Resources
The following tutorials explain how to perform other common tasks in PySpark:
PySpark: How to Drop Duplicate Rows from DataFrame
PySpark: How to Drop Multiple Columns from DataFrame
PySpark: How to Add New Rows to DataFrame