You can use the following methods to create a DataFrame from a list in PySpark:
Method 1: Create DataFrame from List
from pyspark.sql.types import IntegerType
#define list of data
data = [10, 15, 22, 27, 28, 40]
#create DataFrame with one column
df = spark.createDataFrame(data, IntegerType())
Method 2: Create DataFrame from List of Lists
#define list of lists
data = [['A', 'East', 11],
['A', 'East', 8],
['A', 'East', 10],
['B', 'West', 6],
['B', 'West', 6],
['C', 'East', 5]]
#define column names
columns = ['team', 'conference', 'points']
#create DataFrame with three columns
df = spark.createDataFrame(data, columns)
The following examples show how to use each method in practice.
Example 1: Create PySpark DataFrame from List
The following code shows how to create a PySpark DataFrame from a single list:
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
from pyspark.sql.types import IntegerType
#define list of data
data = [10, 15, 22, 27, 28, 40]
#create DataFrame with one column
df = spark.createDataFrame(data, IntegerType())
#view DataFrame
df.show()
+-----+
|value|
+-----+
| 10|
| 15|
| 22|
| 27|
| 28|
| 40|
+-----+
The resulting DataFrame contains one column of integer values that came directly from the values in the list.
Note: In this example we specified that the column should be an integer, but you could instead use StringType, FloatType, etc. to specify a different data type. Refer to the PySpark documentation for a complete list of data types.
Also note that you can also use the withColumnRenamed function to rename the column in the DataFrame:
#rename column name to 'some_data'
df = df.withColumnRenamed('value', 'some_data')
#view updated DataFrame
df.show()
+---------+
|some_data|
+---------+
| 10|
| 15|
| 22|
| 27|
| 28|
| 40|
+---------+
Notice that the column name has been renamed to some_data.
Example 2: Create PySpark DataFrame from List of Lists
We can use the following syntax to create a PySpark DataFrame from a list of lists:
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
#define list of lists
data = [['A', 'East', 11],
['A', 'East', 8],
['A', 'East', 10],
['B', 'West', 6],
['B', 'West', 6],
['C', 'East', 5]]
#define column names
columns = ['team', 'conference', 'points']
#create DataFrame
df = spark.createDataFrame(data, columns)
#view DataFrame
df.show()
+----+----------+------+
|team|conference|points|
+----+----------+------+
| A| East| 11|
| A| East| 8|
| A| East| 10|
| B| West| 6|
| B| West| 6|
| C| East| 5|
| C| East| 15|
| C| West| 31|
| D| West| 24|
+----+----------+------+
The resulting DataFrame contains three columns with the column names that we specified.
Additional Resources
The following tutorials explain how to perform other common tasks in PySpark:
PySpark: How to Create Empty DataFrame with Column Names
PySpark: How to Create New DataFrame from Existing DataFrame
PySpark: How to Add New Rows to DataFrame