You can use the optim function in R for general-purpose optimizations.
This function uses the following basic syntax:
optim(par, fn, data, ...)
where:
- par: Initial values for the parameters to be optimized over
- fn: A function to be minimized or maximized
- data: The name of the object in R that contains the data
The following examples show how to use this function in the following scenarios:
1. Find coefficients for a linear regression model.
2. Find coefficients for a quadratic regression model.
Let’s jump in!
Example 1: Find Coefficients for Linear Regression Model
The following code shows how to use the optim() function to find the coefficients for a linear regression model by minimizing the residual sum of squares:
#create data frame
df <- data.frame(x=c(1, 3, 3, 5, 6, 7, 9, 12),
y=c(4, 5, 8, 6, 9, 10, 13, 17))
#define function to minimize residual sum of squares
min_residuals <- function(data, par) {
with(data, sum((par[1] + par[2] * x - y)^2))
}
#find coefficients of linear regression model
optim(par=c(0, 1), fn=min_residuals, data=df)
$par
[1] 2.318592 1.162012
$value
[1] 11.15084
$counts
function gradient
79 NA
$convergence
[1] 0
$message
NULL
Using the values returned under $par, we can write the following fitted linear regression model:
y = 2.318 + 1.162x
We can verify this is correct by using the built-in lm() function in R to calculate the regression coefficients:
#find coefficients of linear regression model using lm() function
lm(y ~ x, data=df)
Call:
lm(formula = y ~ x, data = df)
Coefficients:
(Intercept) x
2.318 1.162
These coefficient values match the ones we calculated using the optim() function.
Example 2: Find Coefficients for Quadratic Regression Model
The following code shows how to use the optim() function to find the coefficients for a quadratic regression model by minimizing the residual sum of squares:
#create data frame
df <- data.frame(x=c(6, 9, 12, 14, 30, 35, 40, 47, 51, 55, 60),
y=c(14, 28, 50, 70, 89, 94, 90, 75, 59, 44, 27))
#define function to minimize residual sum of squares
min_residuals <- function(data, par) {
with(data, sum((par[1] + par[2]*x + par[3]*x^2 - y)^2))
}
#find coefficients of quadratic regression model
optim(par=c(0, 0, 0), fn=min_residuals, data=df)
$par
[1] -18.261320 6.744531 -0.101201
$value
[1] 309.3412
$counts
function gradient
218 NA
$convergence
[1] 0
$message
NULL
Using the values returned under $par, we can write the following fitted quadratic regression model:
y = -18.261 + 6.744x – 0.101x2
We can verify this is correct by using the built-in lm() function in R:
#create data frame
df <- data.frame(x=c(6, 9, 12, 14, 30, 35, 40, 47, 51, 55, 60),
y=c(14, 28, 50, 70, 89, 94, 90, 75, 59, 44, 27))
#create a new variable for x^2
df$x2 <- df$x^2
#fit quadratic regression model
quadraticModel <- lm(y ~ x + x2, data=df)
#display coefficients of quadratic regression model
summary(quadraticModel)$coef
Estimate Std. Error t value Pr(>|t|)
(Intercept) -18.2536400 6.185069026 -2.951243 1.839072e-02
x 6.7443581 0.485515334 13.891133 6.978849e-07
x2 -0.1011996 0.007460089 -13.565470 8.378822e-07
These coefficient values match the ones we calculated using the optim() function.
Additional Resources
The following tutorials explain how to perform other common operations in R:
How to Perform Simple Linear Regression in R
How to Perform Multiple Linear Regression in R
How to Interpret Regression Output in R