In hypothesis testing, we want to know whether we should reject or fail to reject some statistical hypothesis.

To make this decision, we compare the p-value of the test statistic to a significance level we have chosen to use for the test. If the p-value is less than the significance level, we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis.

This calculator tells you whether you should reject or fail to reject a null hypothesis based on the value of the test statistic, the format of the test (one-tailed or two-tailed), and the significance level you have chosen to use.

One-tailed or two-tailed hypothesis?

Significance level

Z-statistic or t-statistic?

Decision Rule: fail to reject the null hypothesis

Explanation:

The p-value for a Z-statistic of 1.34 for a two-tailed test is 0.18025. Since this p-value is greater than0.05, we fail to reject the null hypothesis.

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike. My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.